Relapse of Depressive Symptoms After Discontinuing Sertraline

To the Editor: Dr Keller and colleagues1 report marked differences between continuing and discontinuing previously successful treatment with sertraline hydrochloride in patients with chronic depression. New episodes occurred in 10% of patients continuing sertraline (146 mg/d) for up to 18 months vs 30% after discontinuing sertraline and changing to placebo (over a period of 2.9 weeks), with new symptoms developing in 43% vs 72%, respectively. These differences (20%-27%) indicate a moderate sparing of relapse. It is remarkable that so many formerly long-term ill patients did so well after switching to placebo, but some may represent previously untreated but reversible disorders.

The reported pattern of relapses is well-known in discontinuation trials, with a sharp, early separation of treated and continued patients, and little difference after the first few months.2-4 Computed rates (95% confidence interval [CI]) of return of depressive symptoms in weeks 1 to 24 were 1.91 (95% CI, 1.58-2.24) per week after discontinuation vs 0.77 (95% CI, 0.59-0.95) with sertraline continued, a 2.5-fold difference. At weeks 25 to 80, corresponding rates were much lower and indistinguishable: 0.14 (95% CI, 0.12-0.16) vs 0.13 (95% CI, 0.11-0.15) per week. This pattern suggests a time-limited impact of drug discontinuation itself, or early culling of patients particularly vulnerable to treatment discontinuation.2-5

These findings indicate that (1) remarkably, many subjects meeting criteria for chronic depression did well after relatively rapid discontinuation of ongoing antidepressant treatment (45%-70%), (2) overall drug and placebo differences were modest (20%-27%), and (3) nearly all of the difference occurred within the first months after discontinuation. Benefits of treatment were thus limited in both magnitude and time.

Treatment discontinuation trials in general medicine and psychiatry probably do not represent straightforward comparisons of treated vs untreated patients, as is often assumed.2 Rapid drug discontinuation may contribute to early relapse risk, which can be limited by a slower taper.2-4 Cost-benefit considerations in planning long-term care of patients with recurrent depressive illness should include the adverse effect, financial burden, and risk of destabilizing persons with undiagnosed bipolar mood disorders with overuse of antidepressants, as well as early impact of rapidly discontinuing ongoing treatment, and a more critical appraisal of true-effect sizes. A final implication is that findings from antidepressant discontinuation trials do not provide compelling support for indefinitely prolonged maintenance treatment as a routine clinical policy.3

Ross J. Baldessarini, MD
Adele C. Viguera, MD
Harvard Medical School
Boston, Mass

In Reply: We disagree with the statement by Drs Baldessarini and Viguera that the maintenance effects of sertraline in our study represent only “moderate sparing of relapse.” A 4-fold reduction in depression recurrence (23% with placebo vs 6% with sertraline) represents a substantial reduction in risk. Further, we are not as surprised as Baldessarini and Viguera at the relatively low relapse rate observed when switching to placebo in our study, which probably resulted from several factors: (1) patients randomized to sertraline or placebo were a compliant and responsive subset (38%) of the original patient sample, (2) placebo treatment was not a “no treatment” condition since study participation necessarily involved a high degree of nonspecific supportive therapy, and (3) chronicity may constitute less of an immediate relapse risk than a high number of prior episodes.

Baldessarini and Viguera further comment that the pattern of relapse “suggests a time-limited impact of drug discontinuation itself.” In fact, the discontinuation of sertraline was carried out gradually, using a 50-mg/wk dosage reduction and a phased-in substitution of placebo, resulting in a 2- to 4-week taper period for most patients. Two to 4 weeks is precisely the definition of “gradual” used by Baldessarini and colleagues1,2 in their research on this topic. Also arguing against a discontinuation-triggered “sharp, early separation of treated and discontinued patients” in terms of relapse were the similar weekly depression-symptom reemergence probabilities based on Kaplan-Meier estimates for the first 2 months of the maintenance phase compared with months 3 to 6. Specifically, the...
weekly depression symptom reemergence probabilities for maintenance phase treatment weeks 0 to 8 were 1.68% and 3.72% per week for sertraline and placebo, respectively (ie, 2.21 times higher for placebo); and the weekly depression symptom reemergence probabilities for weeks 9 to 24 were 0.46% and 1.22% per week for sertraline and placebo, respectively (ie, 2.65 times higher for placebo).

We agree that our findings do not provide compelling support for indefinitely prolonged maintenance treatment. But in light of the known high risk of recurrence and associated morbidity, we think that the prophylactic benefit of sertraline treatment is substantial in the long-term. The clinician and patient, of course, must weigh the increased risk of recurrence after drug discontinuation against the financial cost and adverse effect burden associated with continuing a successful medical regimen.

Martin B. Keller, MD
Brown University
Providence, RI
James H. Kocsis, MD
Cornell University School of Medicine
New York, NY
Michael E. Thase, MD
University of Pittsburgh
Pittsburgh, Pa
Alan J. Gelenberg, MD
University of Arizona
Tucson
A. John Rush, MD
University of Texas Southwestern Medical Center
Dallas
Lorrin Koran, MD
Alan Schatzberg, MD
Stanford University School of Medicine
Stanford, Calif
James Russell, MD
Robert Hirschfeld, MD
University of Texas Medical Branch
Galveston
Daniel Klein, PhD
State University of New York
Stony Brook
James P. McCullough, PhD
Susan Kornstein, MD
Medical College of Virginia
Richmond
Jan A. Fawcett, MD
Rush Institute for Mental Well-Being
Chicago, Ill
Lisa LaVange, PhD
Quintiles
Research Triangle Park, NC
Wilma Harrison, MD
Pfizer Inc
New York, NY
for the Sertraline Chronic Depression Study Group

Financial Disclosure: Drs Keller and Thase have served as consultants to and received grant support from numerous pharmaceutical companies, some of which manufacture sertraline or other selective serotonin reuptake inhibitors.

Alendronate and Fracture Prevention

To the Editor: The Editorial by Dr Heaney1 concludes that 4 years of treatment with alendronate sodium produced disappointing results for women with low bone density. It may be too much to expect that only 4 years of modest increases in bone density with alendronate, estrogen, tamoxifen citrate, or other agents would reduce nonspine fracture risk in women with only a modest risk.2-4 However, this should not obscure the important finding that just 3 to 4 years of alendronate substantially reduced the risk of painful fractures in women who have hip bone density at least 2.5 SDs below normal. These findings reinforce National Osteoporosis Foundation guidelines5 that women 65 years and older who are willing to consider treatment for osteoporosis should have a measurement of bone density to determine whether they would benefit from treatment.

The implication that calcium and vitamin D are as effective as alendronate for women with osteoporosis is misleading: the 35% to 50% reductions in fracture risk in the Fracture Intervention Trial occurred in addition to calcium and vitamin D supplementation that was sufficient to raise average intake to more than 1200 mg/d and 250 IU, respectively. Randomized trials have shown that addition of alendronate or raloxifene hydrochloride to calcium and vitamin D supplementation reduces the risk of vertebral fractures and addition of alendronate to these supplements also reduces the risk of hip fractures in women with osteoporosis.2-4,6

Finally, the editorial refers to multiple benefits of hormone replacement therapy. We think, however, that the recent findings that estrogen and progestin increased the coronary heart disease risk during the first year of treatment of women with coronary heart disease1 should make clinicians cautious about assuming that estrogen will have multiple benefits until this is demonstrated by randomized trials.

Steven R. Cummings, MD
Dennis Black, PhD
University of California
San Francisco
Elizabeth Barrett-Connor, MD
University of California
San Diego
Jean Scott, DrPH, RN
University of Maryland at Baltimore
Robert B. Wallace, MD
University of Iowa
Iowa City

2. Cummings SR, Black DM, Thompson DE, et al, for the Fracture Intervention...
In Reply: Dr Cummings and colleagues are correct in noting that those alendronate-treated patients in their trial who had the most severe bone loss did experience a significant reduction in fracture risk, a fact that I had acknowledged explicitly in my editorial. There is, thus, no disagreement there. But they are silent on my 2 main points: (1) the inadequacy of the bone mass paradigm as an explanation for osteoporotic fragility, and (2) the issue of what the physician ought to do when confronted with patients with bone mass values in the range that the World Health Organization Working Group defined as osteopenia (ie, bone mineral density values between −2.5 and −1.0 SDs).

With regard to the first point, despite similar starting bone mineral density values and essentially identical bone mineral density responses to alendronate in the prevalent and nonprevalent fracture groups, the fracture reduction in the group free of fracture at baseline was much less than in the group with prevalent fractures. This finding supports both that reduced bone mass per se was not a fully adequate explanation for the fragility manifested in the fracture group and that increasing bone mass does not guarantee a reduction in fragility. The authors themselves were among the first to note the seeming discordance between the large fracture benefit and the small bone mass changes that have been reported in many of these trials. Thus I am grateful to the authors for giving me the opportunity to reiterate that the somewhat disappointing results of this trial represent not so much a weakness of the therapy as of the paradigm, and to stress once more the importance of exploring the nonmass mechanisms that underlie osteoporotic fractures.

With regard to my second point, the evidence presented by Cummings et al in this arm of the Fracture Intervention Trial does not support the use of prophylactic bisphosphonates in individuals with bone mineral density values greater than −2 to −2.5 SDs below the young adult mean values and without prevalent fractures. For these individuals, other prophylactic modalities (or no intervention at all) have to be considered possibilities. This is not the place to explore these alternatives. Nevertheless, as the authors recognize, hormone replacement therapy has many benefits other than the possible secondary coronary heart disease prevention that recently has been called into question.

Robert P. Heaney, MD
Creighton University
Omaha, Neb

©1999 American Medical Association. All rights reserved.
eral practice. More important, cranberry juice has not been studied as a treatment for symptomatic UTI, and we would recommend antimicrobials instead of cranberry juice for this circumstance.

We agree with Daniels and Zaman that in this era of increasing antibiotic resistance, novel approaches to prevention of UTIs other than antimicrobials are needed. Avenues being pursued include use of a lactobacillus probiotic to restore normal vaginal microbial flora, topically applied carbohydrates that inhibit bacterial attachment, and antiadhesin vaccines.4

Kalpana Gupta, MD, MPH
Walter E. Stamm, MD
University of Washington School of Medicine
Seattle
Delia Scholes, PhD
Group Health Cooperative of Puget Sound
Seattle, Wash

In Reply: Although the primary goal of our study was a comparison of diagnosis and treatment patterns between the health maintenance organization and fee-for-service comparison groups, we also identified differences by age group, and we wish to clarify one of the points we made.

Although the primary goal of our study was a comparison of diagnosis and treatment patterns between the health maintenance organization and fee-for-service comparison groups, we also identified differences by age group, and we wish to clarify one of the points we made.

Increase in the Use of Breast-Conserving Surgery

To the Editor: Mr Riley and colleagues identified a significant increase in breast-conserving surgery (BCS) as well as of radiation therapy following BCS from 1988 to 1993 in the Surveillance, Epidemiology, and End Results (SEER) program linked to Medicare enrollment records. In our recent analyses using the SEER Public Use Data Set, we found that the use of BCS without radiation therapy has, in fact, also increased over time. We identified 35,267 women who were diagnosed as having local or regional stage breast cancer at age 65 years or older between 1988 and 1993 and had either a mastectomy or BCS (the definition of the surgery was the same as reported by Riley et al). The percentage of BCS increased from 23.1% in 1988 to 40.5% in 1993. Of 11,409 patients who received BCS, the use of radiation after BCS increased from 57.7% in 1988 to 63.9% in 1993. Interestingly, among patients who received surgery (mastectomy or BCS), there was actually a net increase in the percentage of all women with breast cancer who received BCS without radiotherapy, so-called nondefinitive therapy. The odds ratios of the nondefinitive therapy were 1.16 (95% confidence interval [CI], 1.02-1.31) for 1989, 1.20 (95% CI, 1.06-1.36) for 1990, 1.31 (95% CI, 1.17-1.49) for 1991, 1.30 (95% CI, 1.15-1.47) for 1992, and 1.46 (95% CI, 1.30-1.64) for 1993, respectively, compared with data from 1988, after adjusting for age (65-74, 75-84, and ≥85 years), race (white, black, and others), marital status (married and unmarried), cancer stage (local and regional), tumor size (<0.5, 0.5 to <1, 1 to <2, 2 to <3, 3 to <4, and ≥4 cm), and SEER areas. This was because the use of BCS increased more rapidly than did the use of radiation therapy after surgery. Our article using the SEER data from 1983 to 1995, which include all cancer patients with different insurance coverage, also showed a similar finding. Physicians should strive to ensure that patients with early-stage breast cancer receive more definitive therapies as justified by the research evidence and recommended by the authorities.

Xianglin Du, MD, PhD
University of Texas Medical Branch
Galveston

Chronic Multisystem Illness Among Gulf War Veterans

To the Editor: In their exploratory and confirmatory factor analyses of symptoms of US Air Force Gulf War veterans, Dr Fukuda and colleagues1 from the Centers for Disease Control and Prevention (CDC) replicated 2 of the 3 syndromes that we identified by factor analysis in Gulf War veterans of a US Naval reserve unit.2 Their syndrome factors 1 and 2 are virtually identical to our factors 1 and 3 (Table). However, 2 methodological problems prevented Fukuda et al from identifying our syndrome factor 2 (“confusion-ataxia”). First, the investigators did not measure the symptoms that would have identified it (Table). Second, they inadvertently excluded those with our syndrome 2 from their sample. By studying only veterans remaining in the service 4 years after the war, they excluded the 70% of original members of those units who left the service soon after the war, some of whom were probably too ill to continue serving. The naval reservists with our syndrome factor 2 had the strongest genetic predisposition to nerve gas injury and the most abnormal neurologic findings,3 all left service soon after the war, and most were occupationally disabled.2,3 Despite these methodological differences, this important replication of our findings confirms that there is a reproducible pattern to the symptoms reported by many Gulf War veterans, and contradicts the present US government position that there is no Gulf War syndrome, only nonspecific symptoms of unrelated illnesses.4

Fukuda et al1 also presented, but did not discuss, a powerful refutation of the government’s argument that wartime stress was a cause of veterans’ current physical symptoms. In the most thorough study to date of risk factors and psychiatric outcomes designed specifically to prove the effects of stress, these CDC researchers found that veterans who experienced the highest levels of combat stress were no more likely to have chronic physical symptoms than those who experienced no combat stress.1 These results confirm our findings2 and those of Stretch et al3 and are the coup de grâce for the government’s stress theory.6

In addition, the simplified 2-symptom case definition proposed by Fukuda et al1 is incongruous with their factor analysis and is invalid. Finding that this definition was satisfied in 15% of personnel who were not deployed to the Gulf proves merely that a loose definition will include many people with nonspecific symptoms besides the few with illness. It does not argue for a psychological etiology.

With replication of our case definitions2 by the CDC study,1 a definitive confirmatory test of our theory of the neurotoxic etiology of Gulf War syndrome in a national veteran sample is indicated. No studies currently under way will accomplish this.

Robert W. Haley, MD
University of Texas Southwestern Medical Center
Dallas

Table. Agreement Between Factor Analysis–Derived Case Definitions of Gulf War Syndrome

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Haley et al2 Factors</th>
<th>Fukuda et al1 Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3</td>
<td>1 2</td>
</tr>
<tr>
<td>Memory problems</td>
<td>65† 15 19</td>
<td>59† −5</td>
</tr>
<tr>
<td>Depression</td>
<td>62† 24 19</td>
<td>76† −3</td>
</tr>
<tr>
<td>Fatigue (daytime sleepiness)</td>
<td>48† 5 5</td>
<td>50† 6</td>
</tr>
<tr>
<td>Speech problems</td>
<td>42† −1 −1</td>
<td>48† −15</td>
</tr>
<tr>
<td>Insomnia</td>
<td>41† 26 6</td>
<td>45† 30</td>
</tr>
<tr>
<td>Distractibility</td>
<td>71† 10 15</td>
<td>NM NM</td>
</tr>
<tr>
<td>Migraine headaches</td>
<td>40† 1 14</td>
<td>NM NM</td>
</tr>
<tr>
<td>Moodiness</td>
<td>NM NM NM</td>
<td>71† 2</td>
</tr>
<tr>
<td>Anxiety</td>
<td>NM NM NM</td>
<td>73† −5</td>
</tr>
<tr>
<td>Thought-processing problems</td>
<td>1 66† 20</td>
<td>NM NM</td>
</tr>
<tr>
<td>Mental confusion</td>
<td>22 57† 31</td>
<td>NM NM</td>
</tr>
<tr>
<td>Ataxia/vertigo</td>
<td>13 52† 27</td>
<td>NM NM</td>
</tr>
<tr>
<td>Sexual impotence</td>
<td>18 48† 15</td>
<td>NM NM</td>
</tr>
<tr>
<td>Joint pain: hips and extremities</td>
<td>33 21 73†</td>
<td>3 84†</td>
</tr>
<tr>
<td>Joint pain: neck and shoulders</td>
<td>38 33 64†</td>
<td>2 85†</td>
</tr>
<tr>
<td>Joint stiffness</td>
<td>NM NM NM</td>
<td>2 85†</td>
</tr>
<tr>
<td>Muscle pain: arms</td>
<td>5 −4 55†</td>
<td>0 63†</td>
</tr>
<tr>
<td>Muscle pain: lower body</td>
<td>22 26 55†</td>
<td>0 63†</td>
</tr>
<tr>
<td>Muscle pain: upper body</td>
<td>13 24 44†</td>
<td>0 63†</td>
</tr>
<tr>
<td>Tingling or numbness in extremities</td>
<td>22 18 41†</td>
<td>NM NM</td>
</tr>
</tbody>
</table>

*NM indicates not measured. Case definitions were developed by Haley et al and Fukuda et al.
†Factor loadings (×100) indicating strong correlation (r≥0.40) between the symptom and the syndrome factor. Joint pain and muscle pain were measured as single factors by Fukuda et al.
and psychic traumas that could have led to negative health consequences. One result of psychic trauma is the development of posttraumatic stress disorder (PTSD). In recent years, a great deal has been learned about the physiology of stress responses and the potential for associated disturbances in the functioning of the hypothalamic-pituitary-adrenal axis, the limbic system, the locus ceruleus-adrenergic system, and the autonomic nervous system. Some studies even suggest that morphologic changes in the limbic system occur following psychic trauma. Additionally, the relationships between these neuroendocrine systems and the gastrointestinal tract have been described. Moreover, it has been noted that individuals with PTSD have increased rates of IBS (35%) and that individuals with IBS have relatively high rates of trauma history (44%) and PTSD (36%).

These findings and our clinical observations suggest potential relationships between the core processes of PTSD and those of IBS, involving neurohumoral and neuroendocrine systems. There may be similarities between the altered reactivity to the external environment that characterizes PTSD and an altered reactivity to the internal environment in IBS. Aziz and Thompson suggest that altered central nervous system processing of painful visceral stimuli in patients with IBS may be related to hypervigilance, a common feature of PTSD. In a more general way, this suggests that there may be variants of PTSD, or posttrauma syndromes, that involve primarily somatic disturbances and expressions as opposed to the classic manifestations established in the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition.

In addition to further research into the potential negative health impacts of the numerous exposures and experiences encountered by those who served in the Persian Gulf, addressing the health concerns of Gulf War veterans requires an integrated intervention involving both medical and mental health providers.

Stephen C. Hunt, MD
Ralph D. Richardson, PhD
VA Puget Sound Health Care System
Seattle, Wash

Letters

To the Editor: In their careful exploratory study, Dr Fukuda and colleagues conclude that the chronic multisymptom condition of deployed veterans was not associated with specific Gulf War exposures and also affected nondeployed personnel. While some experts may feel that stress explains the veterans’ illnesses, there is another possibility.

Investigators from more than a dozen countries have described exposure-induced loss of tolerance among numerous groups, including radiology workers exposed to x-ray developing solutions, Environmental Protection Agency employees exposed in a sick building episode, homeowners in Germany exposed to pentachlorophenol wood preservative, sheep dippers in the United Kingdom exposed to organophosphate pesticides, and Lake Tahoe casino workers exposed to solvents and pesticides. A subset of those exposed subsequently have reported that common chemicals, foods, and drugs trigger multisystem symptoms.

This 2-step process, called toxicant-induced loss of tolerance, appears to be neither classic toxicity nor allergy but may represent a new general mechanism or theory of disease. Initially, those affected often notice feeling ill only after they eat a meal or particular foods, smell certain perfumes or cleaning agents, drink a beer or a cup of coffee, smell engine exhaust, or take a decongestant. Such sensitivities are hallmarks of this loss of tolerance, much as fever is a hallmark for the diverse conditions caused by infectious agents.

In the article by Fukuda et al, Table 3 shows that 5% of their still-active duty veterans vs 2% of controls (P<.05) reported chemical sensitivity. At our request, the authors provided us with additional data: 60 of the Gulf War veterans reported chemical sensitivity, with 11 categorized as “severe” cases and 40 as “mild-moderate” (Rosane Nisenbaum, PhD, written communication, October 1998). One of us (C.S.M.) found that 52 (88%) of the first 59 consecutive patients seen at the Department of Veterans Affairs Houston Regional Referral Center for Gulf War veterans reported new-onset chemical, food, and drug intolerances since the war.

During the past 10 years, several federally sponsored conferences and congressional committees have called for an environmentally controlled hospital research unit for studying this problem. Despite congressional appropriations for this purpose, no such facility has been funded or constructed. Without it, patients’ background chemical exposures cannot be controlled for sufficient periods of time (up to several weeks) so that the effects of low-level exposures can be tested fully and reliably. Ill veterans who wonder whether they are chemically sensitive face a catch-22 situation: experts attribute their illnesses to stress, yet a research facility that might elucidate chemical causes remains unavailable to them.

Claudia S. Miller, MD, MS
University of Texas Health Science Center at San Antonio
Nicholas A. Ashford, PhD, JD
Massachusetts Institute of Technology
Boston, Mass

In Reply: Dr Haley repeatedly contends that our study confirms some findings of his study but also suggests that our study
was flawed where our findings or interpretations do not agree with his. We would like to clarify several points.

First, our study was never intended to replicate or confirm the findings of Haley et al.1 We are skeptical of his study findings and conclusions because of substantial study design flaws already described by others.2,3 Second, we used a very different approach than Haley et al for choosing symptoms to study by factor analysis. To prove a hypothesis that neurotoxic exposures were causing illness among selected Gulf War veterans, Haley et al used unstated criteria to choose symptoms from reports from various Gulf War registries. Because we had no preconceived ideas about a Gulf War syndrome, we used open-ended interviews and examinations of 59 Gulf War veterans and a survey of more than 3700 military personnel from 4 military bases to identify relevant symptoms for study. This lengthy process provided the most epidemiologically and clinically sound basis (ie, least open to bias) for identifying important symptoms among Gulf War veterans. Third, our objective as stated was to study illness in Gulf War veterans who remained in active service. Fourth, stress is a difficult factor to measure, because its manifestations and relations to other disorders are not clear. Although we found only 1 person who met formal criteria for posttraumatic stress disorder, such criteria are just 1 approach for measuring stress. A more fundamental observation is that we found multisymptom illness cases among both Gulf War veterans and, at lower levels, among their nondeployed peers. It is inescapably logical that important etiologic factors probably were common to both groups and were not unique to the Gulf War experience; such factors could include stress. Fifth, we flatly disagree with Haley that our symptom-based case definition is “incongruous” with our factor analysis results and is “invalid.” The results were highly concordant, and this finding helped convince us that the factor analysis results were believable. The role of factor analysis in any study should not be overstated. The meaningfulness of symptom groupings (ie, factors) identified by factor analysis fundamentally depends on the symptoms that are selected for study. Claims that factors constitute disease syndromes should be received with skepticism unless strong supporting biological or clinical evidence is presented. Sixth, we agree with Haley that our findings do not necessarily implicate a psychological basis for symptoms reported by Gulf War veterans. However, unlike Haley, we do not have a particular etiology to champion. Given the nature of war, it remains probable that psychological factors have an important contributing role in the development of unexplained symptoms in some personnel after all wars.4

We agree with Drs Hunt and Richardson and Drs Miller and Ashford that much work remains to be done to understand the basis and relationships among the as-yet unexplained symptoms reported by Gulf War veterans.

William C. Reeves, MD, MSPH
Keiji Fukuda, MD, MPH
Rosane Nisenbaum, PhD
William W. Thompson, PhD
Centers for Disease Control and Prevention
Atlanta, Ga

Update of Cost-effectiveness Analysis for Solvent-Detergent-Treated Plasma

To the Editor: In 1994 we reported a cost-effectiveness analysis for solvent-detergent–treated frozen plasma (SDFP),1 in which we calculated a cost of $289 300 per quality-adjusted life year (QALY) saved. Solvent-detergent treatment involves pooling several thousand units of donated plasma, then applying a detergent to inactivate enveloped viruses such as human immunodeficiency virus (HIV), hepatitis C virus (HCV), and hepatitis B virus (HBV). This technique decreases the transmission risk for these viruses, although it theoretically can increase the transmission risk for nonenveloped viruses. Despite the poor projected cost-effectiveness of SDFP, the Food and Drug Administration has recently licensed it for use in the United States, with distribution being handled by the American Red Cross Blood Services.

Since our initial analysis was published, several of the assumptions used in the analysis have changed. Improved viral screening has led to new, lower estimates of HIV, HCV, and HBV transmission risk,2 and the marginal cost of SDFP is approximately 5-fold higher than originally estimated. Updated models of HIV disease also have been published.3 Using our original model with these updated figures, we now calculate a cost of $9 743 000 per QALY. All patient subgroup analyses yielded costs per QALY exceeding $2.8 million.

Poor cost-effectiveness, as well as continuing concern about the pooled nature of the component, suggests a need to consider alternative methods of improving plasma safety. These include “fresh frozen plasma donor retested” (for which units are released only after the donor is found to be negative for all tests at a time beyond the “window period” for serologic markers of infectious diseases4) and methylene blue treatment of plasma.

Brian R. Jackson, MD
John D. Birkmeyer, MD
Dartmouth-Hitchcock Medical Center
Lebanon, NH

In Reply: Mr Barzilai and Dr Rimm propose 2 interesting and testable hypotheses: first, that physician referrals might be a major factor underlying the relationship between the 2 types of care, and second, that uninsured patients might use these therapies differently than those with health insurance do.

The TABLE shows the multivariate analysis modeling use and quantity of physician visits as a function of unconventional service use in 2 subgroups: patients not reporting a physician referral for unconventional treatment and patients without insurance. In each of these subsamples, having an unconventional visit is strongly associated with physician visits, although the magnitude of these associations is somewhat smaller than for the entire sample. These findings suggest that insurance status and physician referrals may partly mediate, but are not the primary factors driving, the association between the 2 systems of care.

Dr Katz addresses a potentially important avenue for additional research—evaluating systems of care that integrate conventional and unconventional treatments. As more data become available on the effectiveness of specific unconventional therapies, it will become possible to design systems incorporating the best of these treatments into mainstream medical care, and to study the impact of these integrated systems on patient satisfaction, cost and use, and health outcomes.

Benjamin G. Druss, MD, MPH
Robert A. Rosenheck, MD
Yale University School of Medicine
New Haven, Conn

CORRECTIONS

Incomplete Financial Disclosure: In the Letter entitled “Relapse of Depressive Symptoms After Discontinuing Sertraline,” published in the July 28, 1999, issue of THE JOURNAL (1999;282:323-324), the financial disclosure statement for the reply letter is incomplete. The following should be added to what was published: “Drs Gelenberg, Rush, Koran, Klein, McCullough, Kocsis, Kornstein, Schatzberg, and Fawcett have served as consultants to and/or received grant support from numerous pharmaceutical companies, some of which manufacture sertraline or other selective serotonin reuptake inhibitors. In addition, Drs Gelenberg, Kocsis, and Schatzberg own stock in 1 or more companies that manufacture sertraline or other selective serotonin reuptake inhibitors, and Dr LaVange is affiliated with Quintiles Inc, a for-profit contract research organization, and in that role provides statistical consulting for many pharmaceutical companies, including Pfizer Inc.”

Incorrect Wording: In the Grand Rounds entitled “Acquired Aplastic Anemia,” published in the July 21 issue of THE JOURNAL (1999;282:271-278), there was incorrect wording in the table. On page 275, the words that read “Benzene hexachloride” should have read “Benzene.”

<table>
<thead>
<tr>
<th>Table. Association Between Unconventional and Conventional Visits in Subsamples Excluding Those With Physician Referrals or Insurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased Odds of a Physician Visit*</td>
</tr>
<tr>
<td>OR (95% CI)‡</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Total sample (N = 16 038)</td>
</tr>
<tr>
<td>No unconventional visits</td>
</tr>
<tr>
<td>Any unconventional visits</td>
</tr>
<tr>
<td>Excluding physician referrals (n = 15 933)</td>
</tr>
<tr>
<td>No unconventional visits</td>
</tr>
<tr>
<td>Any unconventional visits</td>
</tr>
<tr>
<td>Among uninsured only (n = 3080)</td>
</tr>
<tr>
<td>No unconventional visits</td>
</tr>
<tr>
<td>Any unconventional visits</td>
</tr>
</tbody>
</table>

*Odds ratios (ORs) and statistical tests for the first 3 columns were calculated using logistic regression models controlling for physical health status, age, sex, race, education, and geographic region.
†The values reflect the number of physician visits among those with any such visits calculated using least squares mean estimates from general linear models adjusted for physical health status, age, sex, race, education, and geographic region.
‡CI indicates confidence interval; ellipses, reference group.